Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations
نویسندگان
چکیده
منابع مشابه
DNA Sequencing via Quantum Mechanics and Machine Learning
Rapid sequencing of individual human genome is prerequisite to genomic medicine, where diseases will be prevented by preemptive cures. Quantum-mechanical tunneling through single-stranded DNA in a solid-state nanopore has been proposed for rapid DNA sequencing, but unfortunately the tunneling current alone cannot distinguish the four nucleotides due to large fluctuations in molecular conformati...
متن کاملQuantum adiabatic machine learning
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the traini...
متن کاملQuantum-enhanced machine learning
The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all t...
متن کاملQuantum machine learning
Machine learning techniques are applied for solving a large variety of practical problems. The tasks attacked by machine learning algorithms include classification, regression, pattern recognition, etc. Traditionally, machine learning algorithms are divided into two groups depending on the nature of training data: supervised and unsupervised. Supervised machine learning algorithms take on the i...
متن کاملTowards Quantum Machine Learning with Tensor Networks
Machine learning is a promising application of quantum computing, but challenges remain as near-term devices will have a limited number of physical qubits and high error rates. Motivated by the usefulness of tensor networks for machine learning in the classical context, we propose quantum computing approaches to both discriminative and generative learning, with circuits based on tree and matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2017
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.5006882